环境准备
1.python 环境,建议python3.8
环境搭建
pip install torch torchvision torchaudio
数据集准备
新建 pytorch_test 目录,并在目录下 新建RGB 文件夹及子目录,如下
1 | └─RGB |
在green,red,yellow 文件中分别放好,相应底色的图片,每个文件夹,图片数量都需要大于1
数据集验证
查看数据集代码
data_read.py
1 | import torch.utils.data |
运行查看,是否正确读取数据集
报错处理
问题一
1 | ValueError: num_samples should be a positive integer value, but got num_samples=0 |
代码调试时,显示ValueError: num_samples should be a positive integer value, but got num_samples=0
因为用的数据集是已经划分好的,所以不需要再shuffle。加载数据时将shuffle = False,错误即可消除。
1 | # dataLoader = torch.utils.data.DataLoader(dataSet, batch_size=8, shuffle=True, num_workers=4) |
修改为
1 | dataLoader = torch.utils.data.DataLoader(dataSet, batch_size=8, shuffle=False, num_workers=4) |
AttributeError: ‘_MultiProcessingDataLoaderIter’ object has no attribute ‘next’
1 | ``` |
运行上述语句,报错:AttributeError: ‘_MultiProcessingDataLoaderIter’ object has no attribute ‘next’
先尝试将其改为单线程处理
1 | trainloader = torch.utils.data.DataLoader(trainset, batch_size=4, |
image_batch, label_batch = next(iter(dataLoader))
1 | 即可成功运行 |
from future import print_function, division
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.autograd import Variable
from torch.utils.data import Dataset
from torchvision import transforms, datasets, models
from data_read1 import MyDataSet #####第一个.py文件名
配置参数
random_state = 1
torch.manual_seed(random_state) # 设置随机数种子,确保结果可重复
torch.cuda.manual_seed(random_state)
torch.cuda.manual_seed_all(random_state)
np.random.seed(random_state)
random.seed(random_state)
epochs = 20 # 训练次数
batch_size = 16 # 批处理大小
num_workers = 0 # 多线程的数目
use_gpu = torch.cuda.is_available()
对加载的图像作归一化处理, 并裁剪为[224x224x3]大小的图像
data_transform = transforms.Compose([
transforms.Resize(256), #####这部分尺寸最好一致
transforms.CenterCrop(512), #####
transforms.ToTensor(),
])
train_dataset = MyDataSet(img_dir=”./pytorch_test/RGB/train”, transform=data_transform) #####训练数据集的地址
#train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=0)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=False, num_workers=0)
test_dataset = MyDataSet(img_dir=”./pytorch_test2/RGB/validation”, transform=data_transform)#####测试数据集的地址
#test_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=0)
test_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=False, num_workers=0)
加载resnet18 模型,
net = models.resnet18(pretrained=False)
num_ftrs = net.fc.in_features
net.fc = nn.Linear(num_ftrs, 3) # 更新resnet18模型的fc模型,#####因为这里有三类,所以设置为3
if use_gpu:
net = net.cuda()
print(net)
‘’’
Net (
(conv1): Conv2d(3, 6, kernel_size=(5, 5), stride=(1, 1))
(maxpool): MaxPool2d (size=(2, 2), stride=(2, 2), dilation=(1, 1))
(conv2): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))
(fc1): Linear (44944 -> 2048)
(fc2): Linear (2048 -> 512)
(fc3): Linear (512 -> 2)
)
‘’’
定义loss和optimizer
cirterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.0001, momentum=0.9)
开始训练
net.train()
if name == ‘main‘:
for epoch in range(epochs):
running_loss = 0.0
train_correct = 0
train_total = 0
for i, data in enumerate(train_loader, 0):
inputs, train_labels = data
if use_gpu:
inputs, labels = Variable(inputs.cuda()), Variable(train_labels.cuda())
else:
inputs, labels = Variable(inputs), Variable(train_labels)
# inputs, labels = Variable(inputs), Variable(train_labels)
optimizer.zero_grad()
outputs = net(inputs)
_, train_predicted = torch.max(outputs.data, 1)
# import pdb
# pdb.set_trace()
train_correct += (train_predicted == labels.data).sum()
loss = cirterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
print("epoch: ", epoch, " loss: ", loss.item())
train_total += train_labels.size(0)
print('train %d epoch loss: %.3f acc: %.3f ' % (
epoch + 1, running_loss / train_total * batch_size, 100 * train_correct / train_total))
# 模型测试
correct = 0
test_loss = 0.0
test_total = 0
test_total = 0
net.eval()
for data in test_loader:
images, labels = data
if use_gpu:
images, labels = Variable(images.cuda()), Variable(labels.cuda())
else:
images, labels = Variable(images), Variable(labels)
outputs = net(images)
_, predicted = torch.max(outputs.data, 1)
loss = cirterion(outputs, labels)
test_loss += loss.item()
test_total += labels.size(0)
correct += (predicted == labels.data).sum()
print('test %d epoch loss: %.3f acc: %.3f ' % (epoch + 1, test_loss / test_total, 100 * correct / test_total))
torch.save(net, “./pytorch_test/my_model1.pth”) #####保存为一个my_model1.pth文件
1 |
|
from PIL import Image
import torch
from torchvision import transforms
图片路径
#save_path = ‘./my_model3.pth’ #####上一次训练生成的文件
save_path = ‘./pytorch_test/my_model1.pth’ #####上一次训练生成的文件
———————— 加载数据 —————————
Data augmentation and normalization for training
Just normalization for validation
定义预训练变换
preprocess_transform = transforms.Compose([
transforms.Resize(256), #####尺寸保持一致
transforms.CenterCrop(512), #####
transforms.ToTensor(), #####
# transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
class_names = [‘red’, ‘green’, ‘yellow’] #####类别的名字,按顺序
device = torch.device(“cuda:0” if torch.cuda.is_available() else “cpu”)
———————— 载入模型并且测试 —————————
model = torch.load(save_path)
model.eval()
print(model)
#image_PIL = Image.open(‘./pytorch_test/RGB/validation/green/1.bmp’) #####放入你要测试的图片位置
image_PIL = Image.open(‘./pytorch_test/RGB/validation/red/2.bmp’) #####放入你要测试的图片位置
#image_PIL = Image.open(‘./pytorch_test/RGB/validation/yellow/3.bmp’) #####放入你要测试的图片位置
image_tensor = preprocess_transform(image_PIL)
以下语句等效于 image_tensor = torch.unsqueeze(image_tensor, 0)
image_tensor.unsqueeze_(0)
没有这句话会报错
image_tensor = image_tensor.to(device)
out = model(image_tensor)
得到预测结果,并且从大到小排序
_, indices = torch.sort(out, descending=True)
返回每个预测值的百分数
percentage = torch.nn.functional.softmax(out, dim=1)[0]
print(out)
print(“图片预测为:{}”.format(class_names[int(out.argmax(1))]))
print([(class_names[idx], percentage[idx].item()) for idx in indices[0][:5]])
1 |
|
tensor([[ 0.0585, -0.0298, -0.0243]], grad_fn=
图片预测为:red
[(‘red’, 0.35260626673698425), (‘yellow’, 0.32458174228668213), (‘green’, 0.322812020778656)]
```
一辈子很短,努力的做好两件事就好;
第一件事是热爱生活,好好的去爱身边的人;
第二件事是努力学习,在工作中取得不一样的成绩,实现自己的价值,而不是仅仅为了赚钱;